PDOS¶
introduction¶
The distribution of electronic states at various energies is characterized by the density of states (DOS), while the partial density of states (PDOS) is a useful tool for analyzing the contribution of individual atomic orbitals to the DOS.
The implementation of PDOS is given by
where \(C_{n\mu}(\mathbf{k})\) is the coefficient of the NAO.
example¶
An example (refer to folder examples/Si2
) of calculating the PDOS of the diamond Si is given here.
The Input
file is:
INPUT_PARAMETERS
{
nspin 1
package ABACUS
fermi_energy 6.389728305291531
fermi_energy_unit eV
HR_route data-HR-sparse_SPIN0.csr
SR_route data-SR-sparse_SPIN0.csr
rR_route data-rR-sparse.csr
HR_unit Ry
rR_unit Bohr
}
LATTICE
{
lattice_constant 1.8897162
lattice_constant_unit Bohr
lattice_vector
0.000000000000 2.715000000000 2.715000000000
2.715000000000 0.000000000000 2.715000000000
2.715000000000 2.715000000000 0.000000000000
}
PDOS
{
stru_file STRU
e_range -5.0 17.0
de 0.01
sigma 0.07
kpoint_mode mp
mp_grid 12 12 12
}
stru_file
: The structure file name of the supercell. This file indicates the crystal structure of the supercell and the corresponding orbital file. Make sure that both the structure file and the orbital file exist.
e_range
: Specify the energy range of dos, the unit is eV.
de
: specifies the energy interval.
sigma
: Specify the parameters of Gaussian smearing.
For the k point setting of this function, please refer to the kpoint_mode
module.
After the task calculation is completed, there will be three files in the Out/PDOS
folder, namely TDOS.dat
and PDOS.xml
, plot_dos.py
. Specify the projected atomic orbital index in the plot script, and then draw the PDOS plot.