OPTICAL_CONDUCTIVITY¶
introduction¶
The frequency-dependent optical conductivity expressed by the Kubo-Greenwood formula can be formulated as
The imaginary part of the dielectric function is
The real part of the dielectric function is obtained by the Kramer-Kronig transformation,
The linear optical spectrum can be calculated through the dielectric function, such as refractive index \(n(\omega)\), extinction coefficient \(\kappa(\omega)\), absorption coefficient \(\alpha(\omega)\), energy-loss function \(L(\omega)\), reflectivity \(R(\omega)\):
example¶
Here, we provide an example (located in the examples/Si
folder) demonstrating the calculation of the optical conductivity and dielectric function for diamond Si.
The Input
file is:
INPUT_PARAMETERS
{
nspin 1
package ABACUS
fermi_energy 6.389728305291531
fermi_energy_unit eV
HR_route data-HR-sparse_SPIN0.csr
SR_route data-SR-sparse_SPIN0.csr
rR_route data-rR-sparse.csr
HR_unit Ry
rR_unit Bohr
}
LATTICE
{
lattice_constant 1.8897162
lattice_constant_unit Bohr
lattice_vector
0.000000000000 2.715000000000 2.715000000000
2.715000000000 0.000000000000 2.715000000000
2.715000000000 2.715000000000 0.000000000000
}
OPTICAL_CONDUCTIVITY
{
occ_band 4
omega 0 10
domega 0.01
eta 0.1
grid 50 50 50
}
occ_band
: Used to specify the occupied energy band of an insulator or semiconductor. Currently this function can only calculate insulators or semiconductors.
omega
: Specifies the photon energy, the unit is eV.
domega
: Specifies the energy interval of the omega.
eta
: Specify the parameters of Gaussian smearing.
grid
: Specifies the uniform k-point grid used to calculate the optical conductivity.
After completing the task, five main files are generated in the Out/Optical_Conductivity
folder, namely optical_conductivity_real_part.dat
, optical_conductivity_imag_part.dat
, dielectric_function_real_part.dat
,
dielectric_function_imag_part.dat
and plot_optical.py
.