# OPTICAL_CONDUCTIVITY ## introduction The frequency-dependent optical conductivity expressed by the Kubo-Greenwood formula can be formulated as $$ \sigma_{\alpha\beta}(\hbar\omega) = -\frac{i e^2\hbar}{N V_{\mathrm{cell}}}\sum_{\mathbf{k}} \sum_{n,m}\left(\frac{f_{n\mathbf{k}}-f_{m\mathbf{k}}}{E_{n\mathbf{k}}-E_{m\mathbf{k}}}\right) \frac{\langle\psi_{n\mathbf{k}}|v_{\alpha}|\psi_{m\mathbf{k}}\rangle\langle\psi_{m\mathbf{k}}|v_{\beta}|\psi_{n\mathbf{k}}\rangle}{\hbar\omega + E_{n\mathbf{k}}-E_{m\mathbf{k}} + i\eta}\, . $$ The imaginary part of the dielectric function is $$ \epsilon_i^{\alpha\beta}(\omega) = -\frac{e^2 \pi}{\epsilon_0 \hbar} \int \frac{d\mathbf{k}}{\left(2\pi\right)^3} \sum_{nm}f_{nm}r_{nm}^{\alpha}r_{mn}^{\beta} \delta\left(\omega_{mn} - \omega\right)\, , $$ The real part of the dielectric function is obtained by the Kramer-Kronig transformation, $$ \epsilon_{r}^{\alpha\beta}(\omega) = \delta_{\alpha\beta} + \frac{2}{\pi} \mathbf{P} \int_{0}^{\infty} d\omega^{\prime} \frac{\omega^{\prime}\epsilon_{i}^{\alpha\beta}\left(\omega^{\prime}\right)}{\omega^{\prime 2} - \omega^2}\, . $$ The linear optical spectrum can be calculated through the dielectric function, such as refractive index $n(\omega)$, extinction coefficient $\kappa(\omega)$, absorption coefficient $\alpha(\omega)$, energy-loss function $L(\omega)$, reflectivity $R(\omega)$: $$ \begin{aligned} n(\omega) &= \left[\frac{\sqrt{\varepsilon_1^2+\varepsilon_2^2}+\varepsilon_1}{2}\right]^{\frac{1}{2}} \\ \kappa(\omega) &= \left[\frac{\sqrt{\varepsilon_1^2+\varepsilon_2^2}-\varepsilon_1}{2}\right]^{\frac{1}{2}} \\ \alpha(\omega) &= \frac{\sqrt{2} \omega}{c}\left[\sqrt{\varepsilon_1^2+\varepsilon_2^2}-\varepsilon_1\right]^{\frac{1}{2}} \\ L(\omega) &= \operatorname{Im}\left(\frac{-1}{\varepsilon(\omega)}\right)=\frac{\varepsilon_2}{\varepsilon_1^2+\varepsilon_2^2} \\ R(\omega) &= \frac{(n-1)^2+k^2}{(n+1)^2+k^2} \end{aligned} $$ ## example Here, we provide an example (located in the `examples/Si` folder) demonstrating the calculation of the optical conductivity and dielectric function for diamond Si. The `Input` file is: ``` INPUT_PARAMETERS { nspin 1 package ABACUS fermi_energy 6.389728305291531 fermi_energy_unit eV HR_route data-HR-sparse_SPIN0.csr SR_route data-SR-sparse_SPIN0.csr rR_route data-rR-sparse.csr HR_unit Ry rR_unit Bohr } LATTICE { lattice_constant 1.8897162 lattice_constant_unit Bohr lattice_vector 0.000000000000 2.715000000000 2.715000000000 2.715000000000 0.000000000000 2.715000000000 2.715000000000 2.715000000000 0.000000000000 } OPTICAL_CONDUCTIVITY { occ_band 4 omega 0 10 domega 0.01 eta 0.1 grid 50 50 50 } ``` `occ_band`: Used to specify the occupied energy band of an insulator or semiconductor. Currently this function can only calculate insulators or semiconductors. `omega`: Specifies the photon energy, the unit is eV. `domega`: Specifies the energy interval of the omega. `eta`: Specify the parameters of Gaussian smearing. `grid`: Specifies the uniform k-point grid used to calculate the optical conductivity. After completing the task, five main files are generated in the `Out/Optical_Conductivity` folder, namely `optical_conductivity_real_part.dat`, `optical_conductivity_imag_part.dat`, `dielectric_function_real_part.dat`, `dielectric_function_imag_part.dat` and `plot_optical.py`.