# PDOS ## introduction The distribution of electronic states at various energies is characterized by the density of states (DOS), while the partial density of states (PDOS) is a useful tool for analyzing the contribution of individual atomic orbitals to the DOS. The implementation of PDOS is given by $$ g_{\mu}(E)= \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{n} \sum_{\nu} C_{n\nu}^{*}(\mathbf{k}) S_{\nu\mu}(\mathbf{k}) C_{n\mu}(\mathbf{k}) \delta(E - E_{n\mathbf{k}}), $$ where $C_{n\mu}(\mathbf{k})$ is the coefficient of the NAO. ## example An example (refer to folder `examples/Si2`) of calculating the PDOS of the diamond Si is given here. The `Input` file is: ``` INPUT_PARAMETERS { nspin 1 package ABACUS fermi_energy 6.389728305291531 fermi_energy_unit eV HR_route data-HR-sparse_SPIN0.csr SR_route data-SR-sparse_SPIN0.csr rR_route data-rR-sparse.csr HR_unit Ry rR_unit Bohr } LATTICE { lattice_constant 1.8897162 lattice_constant_unit Bohr lattice_vector 0.000000000000 2.715000000000 2.715000000000 2.715000000000 0.000000000000 2.715000000000 2.715000000000 2.715000000000 0.000000000000 } PDOS { stru_file STRU e_range -5.0 17.0 de 0.01 sigma 0.07 kpoint_mode mp mp_grid 12 12 12 } ``` `stru_file`: The structure file name of the supercell. This file indicates the crystal structure of the supercell and the corresponding orbital file. Make sure that both the structure file and the orbital file exist. `e_range`: Specify the energy range of dos, the unit is eV. `de`: specifies the energy interval. `sigma`: Specify the parameters of Gaussian smearing. For the k point setting of this function, please refer to the `kpoint_mode` module. After the task calculation is completed, there will be three files in the `Out/PDOS` folder, namely `TDOS.dat` and `PDOS.xml`, `plot_dos.py`. Specify the projected atomic orbital index in the plot script, and then draw the PDOS plot.